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Abstract A hicrarchicd cluner-clusier ageegation computer model is introduced which allows 
onc to build m d o m  frarral aggregaus on 3 d-dimcnsiond lanice sirh a incral dimension fixed 
apnor i .  The algonthm work itcrxi\ely by sticking aggregates of rhc same number of panicles 
n ihs correct centre-to-centre distance in order to recover the desired scaling. Wsih the more 
efficient versions of the model, my fmcW dimension nnpng from I up IO a ddependent upper 
limit Du(d) can be obtuned One e s t i m s  D x ( 2 )  5 1.80 z 0.03 and Dw(3) 2 2.55 0.04. 
Calculations up to d = 6 show that the rano D.<f(d)/d decreases zs d increascs. 

1. Introduction 

Cluster-cluster aggregation models have been introduced in order to explain the fractal 
structure of several experimental objects such as colloid and aerosol aggregates, clusters of 
balls floating on water, etc (Jullien and Botet 1987). Different models have been introduced 
according to their experimental applications. The original diffusion-limited cluster-cluster 
aggregation model (DLCA) (Meakin 1983, Kolb et al 1983), which is appropriate for 
the rapid aggregation of screened colloidal particles, considers aggregates that undergo 
Brownian motion and stick irreversibly when they come into contact. The ballistic model 
(BCA) (Ball and Jullien 1984, Jullien 1984), which is more appropriate for aerosols in the 
molecular regime, considers independent random straight-line trajectories for the clusters. 
The chemically limited aggegation model (CLCA) (Jullien and Kolb 1984, Kolb and Jullien 
1984), also called ‘reaction-limited’ aggregation (Brown and Ball 1985, Family et d 
1985), which applies to the slow aggregation of partially screened colloids, considers that 
aggregates should collide many times before they stick. These three models, which can be 
classified according to the fractal dimension d, of the cluster trajectory lead to aggregates 
of increasing fractal dimensions, D = 1.78, 1.98,2.05 in dimension d = 3, for DLCA, BCA, 
CLCA, where one can consider that dw = 2, 1, 0, respectively. The observed increase of 
the fractal dimension corresponds to an increase of the~mean penetration of the aggregates 
when they stick. 

It may be noticed that the range of fractal dimensions (1.78-2.05) obtained in the 
three. models is quite narrow. But other cluster-cluster models have been introduced that 
lead to fractal dimensions out of this range. For example, a lower fractal dimension bas 
been obtained in the ‘tip-to-tip’ model (Jullien 1985, 1986) which considers polarizable 
aggregates, and larger fractal dimensions have been obtained when considering restructuring 
processes in the above models (Jullien and Meakin 1989, Meakin and Jullien 1985, 1988). 

All the existing cluster-cluster computer algorithms have already been very useful since 
they have permitted sucessful reproduction of some physical properties of fractal aggregates 
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such as small-angle x-ray and neutron scattering (Axelos etal 1986, Hasmy etal 1993), light 
scattering (Shalaev et al 1991) etc. However, they are limited to specific fractal dimensions 
and therefore they do not allow a systematic study of the physical properties as a function of 
the fractal dimension. In this paper we introduce a generalized cluster-cluster aggregation 
model, which is hierarchical (as most of the previous models) in the sense that only clusters 
of the same number of particles can stick together (Botet et al 1984) and which has the 
great advantage of containing the fractal dimension as an input parameter. In its more 
efficient versions, this model is able to build quite large aggregates with fractal dimensions 
ranging from 1 up to an upper limit, D M ( ~ ) ,  which we have estimated numerically for space 
dimensions d ranging from 2 to 6. In section 2 we present the principles of the method 
and in section 3 we describe the algorithms that we have set up. In section 4 we present 
analytical investigations of some limiting cases and in section 5 we give the numerical 
results. 

R Thouy and R Jullien 

2. Principles of the model 

The aggregates are built on a d-dimensional hypercubic lattice with unit lattice parameter. 
That means that they are made of connected (hyper-)spherical particles of unit diameter 
centred on the sites of the lattice. We use the hierarchical procedure (Botet et a1 1984) 
which s t m  with a collection of 2" particles. These particles are grouped into pairs. Each 
pair generates an aggregate of two particles so that, at iteration p = I, one obtains 2"-' 
dimers. The dimers are grouped into pairs that generate tetramers and so on. At iteration p 
one obtains 2"-P aggregates containing 2 p  particles each. The procedure stops at iteration 
p = n, where a final aggregate of 2" particles is obtained. The model is entirely defined 
giving the rules used to stick together two aggregates of N particles to generate an aggregate 
of 2N particles but, before introducing these rules, let us recall some definitions and derive 
a useful formula. 

The size of an aggregate of N particles is conveniently characterized by its radius of 
gyration (Guinier 1937) R N  given by 

where the d-dimensional vector of integer components ri refers to the position of the ith 
particle centre. Introducing the position TG of the centre of mass G, 

the radius of 'gyration is also given by 

Following previous reasoning (Ball and Witten 1984, Ball and Jullien 1984, Jullien 
1984, Warren 1993), the radius of gyration RIN of an aggregate of'2N particles, resulting 
,from the sticking of two aggregates (1) and (2) of N particles, can be expressed as a function 
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of their radii R N I  and RNZ after using (1) and splitting the sum into four parts depending 
on whether i and j belong to the same cluster or not: 

In this formula il and j z  refer to particles belonging to aggregates (1) and (2), respectively. 

(5)  

Then, introducing 

I? = TGI - TG2 

ri, - rj2 = (Ti, - rc , )  - (rj, - TG,) + b r  . 
where G I  and G2 are the centres of mass of clusters (I) and (Z), one can write: 

(6) 
Inserting into ( 4 )  and making use of (2) and (3), one gets 

RL = (R;) + +r2 
with 

(7) 

( R i )  = f ( R i ,  + R i 2 ) .  

N - R j  (9) 

(8) 
Our method is based on equation (7). If one assumes that fractal scaling holds, i.e. 

where A is the fractal dimension, r should be proportional to the radius of gyration 

r=km 
and the constant of proportionality k should be related to A by 

k=2-. 

In practice, instead of (IO), we will make use of the following relation: 

Considering the addition of +I ensures that the formula works exactly at the first iteration 
p = 1 when building dimers from individual particles, where RN = O~and r = 1. The 
added term becomes negligible when N is large. This introduces 'natural' corrections to 
scaling of the type of those recently discussed by Warren (1993). 

In conclusion, given A, which here becomes the input parameter (in addition to the 
space dimension d),  one can calculate k by (11) and if one can manage to ensure (12) 
during the sticking of two aggregates of N particles, one should be able to build fractal 
aggregates of the desired fractal dimension. In practice, we calculate the fractal dimension 
D of the resulting clusters and our program works if the output parameter D is equal to A. 
The.main difference between this model and previous models (such as DLCA, BCA and CLCA) 
is that the natural distribution of the penetration parameter r, which depends on the physical 
aggregation process, is replaced here by a Dirac peak. Thus, in addition to the hierarchical 
approximation, which is to neglect the polydispersity of aggregates, we introduce another 
approximation which is to neglect the polydispersity of their penetration distances. 
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3. Details of the algorithm 

As soon as an aggregate has been built, a search is performed to find its surface particles is 
(i.e. particles having at least one unoccupied nearest neighbour) as well as for the unoccupied 
lattice sites in, nearest neigbours to the surface sites that we call neighbour-surface sites, 
and this information is conveniently stored in addition to the radius of gyration and the 
coordinates of its particles. Then, given two aggregates of N particles (1) and (2), a double 
loop is performed over the Ns surface sites of ( 1 )  and the N, neighbour-surface sites of 
(2). Cluster (2) is translated in order that the current surface site of (1),  is,, coincides with 
the current neighbour-surface site of (Z), in2. (see figure 1). Then a test is performed to 
discard overlapping situations, i.e. situations where at least one particle of ( I )  coincides 
with a particle of (2). For each remaining configuration, the distance r between the centres 
of mass is calculated as well as the following quantity: 

R Thouy and R Jullien 

(13) 
2 6r = (rZ - $ k 2 ( R i I  + R i 2 )  - 1) . 

Figure 1. Two-dimensional sketch of the procedure used to build M 

aggregate of 2N panicles by sticking two aggregates of N particles. 

Among all the sticking positions, one retains the one that minimizes 6r and, if there 
are different positions leading to the same minimum value, one makes a uniform random 
choice over these possibilities. We have considered several versions of our program. 

(i) Version A. In version A, only one configuration of cluster (2) is considered for each value 
of is and in, which is the configuration obtained by a strict translation of the original cluster. 
Since at p = 1 the dimers are built in random directions, they maintain their orientations at 
p = 2 to build tetramers. Therefore, in this version, orientational randomness is introduced 
in the early iterations. 
(ii) Version B. In version B, one considers d configurations of cluster (2) for each value of 
is and i,, which are all the configurations obtained by rotations around the first diagonal 
(circular permutations of the coordinates). We will see that this amelioration is essential to 
recover the lowest fractal dimension D = 1 for A = 1. Other rotations could have been 
considered as well as reflections along some coordinate axes, however, we have observed 
that such modifications slow down the program without providing so much improvement. 
(iii) Case A = 00. Since A is an input parameter of our model, it is not forbidden to 
raise it to very large (unphysical) values, larger than the space dimension d. In the limit 
A = 00, one recovers a nice hierarchical model in which the rule of sticking two clusters 
is to choose the minimum distance between their centres of mass. In both versions A and 
B we have written special codes for this limiting case that we will call version A' and B' 
in the following. In these codes the only input parameter is the space dimension d. 

In all the versions considered, the square of the radius of gyration has been averaged 
over the 2"-p  clusters of N = 2 p  particles obtained at each iteration. Then, instead of 
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making a least-square fit of the log-log plot of N versus m, we have calculated an 
N-dependent fractal dimension D(N) obtained by comparing the results from one iteration 
to the next one (Ball and Jullien 1984): 

The term $ is introduced to take care of the corrections to scaling, as has recently been 
justified (Warren 1993). We have also estimated the surface fractal dimension Ds from the 
calculation of the mean number of neighbouring surface sites (N,(N)) at each iteration (one 
could have used either of the surface sites). Here we have also calculated an N-dependent 
surface fractal dimension D,(N) from 

4. Analytical results in some limiting cases 

4.1. Case A = 1 

We can show that version B allows exact recovery of a linear chain when the input parameter 
A is set to 1. For a linear chain of N particles, the radius of gyration is given by 

N2- 1 R i  = - 
12 

Since from 11 we get k2 = 12, formula (12) gives f = N, which is exactly the centre-of- 
mass distance needed to stick two chains of N particles end-to-end to obtain a chain of 2N 
particles. However, since the dimers are obtained in random directions at the first iteration. 
one needs to allow rotations to start to build the linear chain correctly. As we will see 
in section 5, version A, which considers only translations, is not able to build clusters of 
fractal dimensions extending down to 1. It is also worth noticing that (15) gives exactly 
D(N) = 1 for all N in this limiting case. 

4.2. Case A = 2 

It might be interesting to see if the model allows one to recover a plane of particles when 
setting A = 2. The sequence of clusters shown at the top of figure 2(a), which are obtained 
by sticking alternately north-easdsouth-west and easdwest, have a radius of gyration given 
by 

N - 1  R i  = - 
4 

Since k2 = 4 here, equation (12) gives I' = fi, which is again exactly what is needed 
to build a plane of particles in that way. However, this sequence is nor reproduced by our 
model since some degeneracies appear as early as iteration p = 3. In figure 2(a), one has 
depicted two other configurations obtained, in version B, by sticking p = 2 clusters with 
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(4 

I P 7 

1 2 3 4 

1 2 5 4 5 

Figure 2. Typical sequences of clusters which can be built with the different versions of the 
model. The sequence shown in top of (a) would lead exactly to an infinite plane. however. due 
to the degeneracies appearing a itemtion p = 3, both versions A and B do not build a plane for 
A = 2. d = 2. The sequence shown in (b), which also leads to a plane, is exactly recovered 
using version B' with d = 2. However, the corresponding d = 3 sequence shown in (c )  is not 
recovered by version B' in d = 3. 

r = 2 in space dimension d = 2 (in version A, the cluster on the right is not obtained). 
Some more configurations are generated when working in higher space dimensions. One 
could have built other versions of our model which would have included some restrictions 
in the rules in order to recover a plane for A = 2. However, such restrictions would have 
led to regular fractals, while our aim here is to build random fractals, closer to what it is 
seen in the experiments. 

Note that, in the large-N limit, the clusters shown on the top of figure 2@) are 
parallelograms of angle 45" and edge lengths of ratio A. By sticking two of these 
parallelograms, one obtains a parallelogram of the same type. The renormalization 
transformation is the same at each step and does not oscillate in contrast with the sequence 
shown in figure 2(6). 

4.3. Case A = 3 

In that case, there is no sequence of clusters which would satisfy our basic equations exactly. 
In the asymtotic la rge4  limit such clusters should be rhombohedra with edges proportional 
to 2'13, 

4.4. Case A = 00 

The sequence shown in figure 2(b), which builds squares every two iterations, satifies the 
rule of the minimum r and we have checked that this sequence is well recovered when 

and 2. Apparently there is no way to do this on a cubic lattice. 
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running version B' in d = 2. However, the corresponding sequence, which builds cubes 
every three iterations, is not recovered when running version B' in d = 3. This is due to 
the appearence of a degeneracy at iteration p = 5 as shown in figure 2(c).  

5. Numerical results 

5.1. Case d = 2 

In figure 3(a) and 3(b) we show three typical clusters, containing 8192 particles each, built 
in two dimensions using versions A and B, respectively, with A = 1, 1.5 and 2. One 
can check that for A = 1 a straight-line chain is recovered with version B but not with 
version A. The corresponding plots for the effective fractal dimensions D ( N )  and D,(N)  
as a function of 1/N are given in figure 4. These data result from an average over five 
independent runs, all ending with aggregates of 8192 particles. In the case A = 1.5 the 
two versions A and B, are quite efficient since D ( N )  stays equal to 1.5 within less than 0.1 
per cent for all N z 16. In fact, we have checked that the same efficiency is obtained for 
all A values in the range 1.15 < A < 1.75 with version A and in the range 1 4 A e 1.75 
with version B. 

(4 

h 
Figure 3. Typical two-dimensiond aggregates of 8192 particles obtained for A = I ,  1.5 and 
2. Cases (a)  and (b)  correspond to versions A and B, respectively. The scale has been chosen 
such that the vertical dimension is the same on dl pictures. 

When one asks for A values out of these ranges, the computer time is increased and the 
convergence of the effective fractal dimensions when N + CO becomes weaker. In version 
A for A = 1, by analysing the convergences of D(N) and D,(N),  one obtains the estimate 
Dm(2) = 1.14 f 0.02 which is a lower bound for the fractal dimensions obtained with this 
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A = 2  

A = 1 . 5  

A = I  

~ 

. 

. 
D . 

0.8 0.8- 
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 

1/N ( b )  I IN ( a )  

Figure 4. Plot of D ( N )  and D d N )  versus l j N  in d = 2 for A = 1. 1.5 and 2, after averaging 

versions A and B. respectively. Filled and open symbols correspond to D ( N )  and D , ( N ) .  
the results Over five independent N n S  Up to 8192 QkXtiCleS. Cases (a) and (b)  COrreSpOnd tO 

respectively. 

version. In both versions A and B, for A = 2 the convergence of the fractal dimensions is 
even poorer. However, D ( N )  converges to the same value giving the following estimate 
for the upper bound in two dimensions: 

D M ( ~ )  = 1.80 f 0.03 . (19) 

It is worth noticing that for 4 = 2, the effective fractal dimensions D(N) and D , ( N )  remain 
quite close to the values 2 and 1, respectively, for small N values, as would be expected 
for a compact two-dimensional aggregate with a smooth surface. But. as N increases, the 
hierarchical process cannot avoid building a rough surface. As a result D,(N)  increases and 
D(N) decreases and finally both D ( N )  and D,(N) tend to the same asymptotic value as 
expected for a mass fractal. Note that the convergence is better with model A, where some 
disorder exists from the beginning. However, such a tiny difference cannot be seen on the 
A = 2 clusters of figures 3(a) and 3@). The observed difference should be attributed to 
fluctuations. Therefore, the fact that one cannot reach D = 2 in d = 2 with our model is 
due to geometrical frustrations associated with the disordered character of our procedure. 
Note that. if one eliminates disorder by working with rigid rules leading to regular fractals, 
one can reach D = 2. For example, as noticed in section 4.3, the version B’ , which builds 
the sequence of figure 2 (b), is able to give D = 2. But using version B with a very large, 
but finite, 4 value, some degeneracies appears as soon as N is sufficiently large and finally 
D(N) tends to 1.8. 

5.2. Cased = 3 

In figure 5 we show two-dimensional projections of five clusters, containing 8192 particles 
each, built in three dimensions using version A with A = 1, 1.5,2.0,2.5 and 3. We have 
not shown clusters built with version B since, except for 4 = 1, they look pretty much the 
same. 

The corresponding plots for the effective fractal dimensions D ( N )  and D,(N)  as a 
function of 1 / N  are given in figures 6 and 7. They result from single runs up to 8192 
particles. Here, again, one obtains a good efficiency for intermediate A values. As soon 
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as N is larger than 16, D ( N )  becomes equal to the desired value within less than 0.1 per 
cent. The lowest fractal dimension obtained with version A is D,(3) = 1.22~k0.05, a value 
larger than in Two dimensions. As in two dimensions, both versions cannot reach D = d. 
The upper fractal dimension, as deduced from the extrapolation of the D ( N )  and D , ( N )  
curves for A = 3, can be estimated as 

D M ( ~ )  = 2.55 5 0.04. (20) 

The same slower convergence as in d = 2 is observed with version B for A = d. 

Figure 5. Two-dimensional projections of typical three-dimensional aggregates of 8192 particles 
built with version A for A = I ,  1.5, 2, 2.5 and 3. The scale has been chosen such that the 
verrical dimension is the same on all pictures. 

- 3 ' T , , - ~ , I . ~ , , : , ,  2.5 2.0 0 t : - s-ii,!,,;,-,,~[,& 2.0 : A * A I 2  

I - z A =  2 - 
P * P . 

1.5 

0 .  I &=I 
1 .o 1.0 0 B 0 A =  I 

0.5 0.5 
0.00 0.01 0.02 0.03 0.04 0.0s 0.06 0.07 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 

I I N  (a) I IN ( a )  

Figure 6. Plot of D(N) and D,(N) versus 1/N in d = 3 for A = 1.2, and 3, from single runs 
up to SI92 particles. Cases (a) and (b) correspond to versions A and B, respectively. Filled 
and open symbols correspond to D ( N )  and & ( N I ,  respectively. 
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- 2.0 : i : : , . ~ , ~ ~ , : , , = : ~ , , I . , : . ~ ~ . ~ , ,  - - P 2.0 

. 1 I 1.5 A a : a A = 1 . 5  . 1.5 k L 6.1.5 a . 
1.0 1.0 

0.5 0.5 
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 

( a )  1 /N (6) 1/N 

Figure 7. Same as figure 6. but for A = 1.5 and 2.5. 

5.3. Estimution of Du(d)  up to d = 6 

To study how D u ( d )  evolves when increasing d, we have used the quicker version A' , up 
to d = 6. We have calculated-D(N) and D,(N) up to N = 4096 particles after averaging 
over ten runs, except for d = 6 where only five runs have been considered. We have 
checked that the version A' gives almost the same estimate for D M ( ~ )  than versions A and 
B with A = d = 3 (formula (20)). In addition, ford  = 4,5,6,  one has obtained: 

Dw(4) = 3.20 & 0.06 Dw(5) = 3.85 f 0.075 Du(6)  = 4.38 f 0.15 . (21) 

In figure 8, we report the ratio Du(d) /d  as a function of d. This ratio is monotically 
decreasing as d increases. Therefore, the geometrical frustration effects described in section 
5.1 become more and more important as the space dimension increases. However, since 
we are systematically avoiding overlaps when building a cluster of 2N particles from two 
clusters of N particles, the two clusters can never become transparent to each other and 
therefore their fractal dimension should stay larger than d/2. I t  may be that the upper fractal 

d 

Figure 8. Plot of Dw(d)/d as a function of d .  
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dimension Dnr(d) tends to this lower bound as d tends to infinity, leading to D,/d -+ f .  
The results of figure 8 are not inconsistent with this conjecture. However, one needs to 
have more high-dimensional data to be able to conclude more clearly. Unfortunately, as d 
increases the CPU time increases and the precision of the results decreases. 

6. Conclusion 

In this paper we have presented a computer algorithm able to build random fractal aggregates 
with a tunable fractal dimension. With version B of our algorithm, all fractal dimensions 
ranging from 1 to an upper limit D M ( d )  can be obtained. The fact that one cannot reach 
fractal dimensions as large as D = d is due to geometrical frustrations induced by disorder: 
our hierarchical method introduces natural surface roughness while, to reach D = d ,  one 
needs a smooth surface. A way to avoid this limitation, while preserving randomness, would 
be to introduce some cluster-size polydispersity in a controlled way. Such an extension of 
our model is under progress. In the near future, we intend to use our algorithm to make a 
systematical investigation of some physical properties of fractal aggregates as a function of 
their fractal dimension. 
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